

Ciências do Mar na Margem Equatorial Brasileira

Plataforma CASSIE-CORE: [Módulo de] Inversão topo-batimétrica a partir de imagens de satélite

Por: Antonio H. F. Klein

1

Ações: Projeto de Estado (2018)

B823p Brasil. Ministério do Meio Ambiente.

Programa Nacional para Conservação da Linha de Costa – PROCOSTA [recurso eletrônico] / Ministério do Meio Ambiente, Secretaria de Recursos Hídricos e Qualidade Ambiental, Departamento de Gestão Ambiental Territorial. – Brasília, DF: MMA, 2018.

Modo de acesso: World Wide Web: <http://www.mma.gov.br/publicacoes/gestaoterritorial/category/198-gestao-costeira-procosta>

ISBN: 978-85-7738-362-7 (on-line)

Equipe de elaboração do Projeto Coordenação-Geral de Gerenciamento Costeiro

Régis Pinto de Lima Angelita de Sousa Coelho Salomar Mafaldo de Amorim Diego Pereira de Oliveira

Revisão

Antonio Henrique da Fontoura Klein (UFSC) Roberto Teixeira Luz e Salomão Soares (IBGE) João Luis Nicolodi (FURG)

Ações: Projeto de Estado (2018)

Impacto das mudanças do clima (nível do mar e extremos de ondas) em empreendimentos costeiros

Inundação costeira (2017)

Alerta => Deficiência (entre outras)

- Falta de condições de contorno para realizar modelagens numéricas:
 - Topografia da zona intermaré.
 - Batimetria.
 - Sequencia/Recorrência de levantamentos.

[Batimetria normalmente só em áreas portuárias]

Dados espacial/tempo - Dimensionamento de Projetos de **Engenharia** Costeira

Alimentação de praia

Regra de Bruun => Volume = R.(B+h*) => R pode ser calculado em função da variação da linha de costa Perfil de Equilíbrio $= > h = A.x^{m}$ = > B, h ou h* variações de profundidades (topo-batimetria)

Inundação costeira

Regra de Bruun

- = > I = S/tan B = > Tan B Topo-batimetria => mapas de inundação ou Squeeze
- Dragagem de canais (aprofundamento, manutenção)

Evolução/acompanhamento da batimetria (LH Categoria B - NORMAM 501/DHN, pagina J-18)

Complexidade e investimento em levantamentos in situ

• Levantamentos in-situ são complexos e caros.

Fonte: R2sonic (www.r2sonic.com/products/platforms/#surface-vessel)

 Na grande maioria dos locais do Brasil (globo), medidas indiretas (sensoriamento remoto por satélite) são atualmente a única fonte de informação para complementar a aquisição *in-situ*, permitindo uma cobertura espacial e temporal maior.

Histórico aumento resolução

- 1972 2024 (42 anos) => Expansão e recentemente aceleração do número de programas com lançamento de satélites de sensores óticos em todo mundo (Brasil CBERS 04-A, 1999/2014, público, resolução de 16,5m a 2m – pixel, cada 31 dias).
- Aumentou consideravelmente a resolução:
 - temporal (revisitas);
 - espacial (sensores multiespectrais + pancromático);
- Constelações de micro e nanosatélites.

Missões satélites e sensores

Landsat (US) – (Sensores Landsat 5, 7, 8 e 9)

Fonte: https://www.usgs.gov/landsat-missions (último acesso: 15/10/2024)

Resolução do pixel: 30 m Tempo de revisita: 15 dias Série temporal: 1984 - presente

Sentinel (EU) – (Sensores Sentinel-2)

Fonte: https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2 (último acesso: 15/10/2024)

Resolução do pixel: 10 m Tempo de revisita: 5 dias Série temporal: 2015 - presente

Coastal Analyst System from. Space Imagery Engine

An open-source web tool for automatic shoreline mapping and analysis using satellite imagery.

https://cassiengine.org

- Ferramenta Web gratuita (código aberto) Creative Commons CC-BY-SA
- *Back* e *front end* Java Script e web-framework React
- Faz uso da API do Google Earth Engine (GEE)
- Os módulos são soluções de apoio:

 $C.\Lambda.S.S.I.E.$

- monitoramento
- determinação de condições de contorno
- gestão costeira

Como acessar e processar dados de Sensoriamento Remoto de forma simples e amigável – CASSIE

CASSIE

Seleção de Módulo

Análise de Linha de Costa

Mapeamento automático e análise estatística da evolução da linha de costa em qualquer área de interesse costeira no mundo, usando este módulo.

ESCOLHER

Batimetria (beta)

Estimativa de profundidade de águas pouco profundas numa região costeira selecionada, usando algoritmos de inversão ótica e machine learning.

ESCOLHER

Compressão Costeira (beta)

Mapeamento e análise de indicadores para obtenção do potencial de Compressão Costeira (Coastal Squeeze) em áreas de manguezais.

ESCOLHER

Intermaré (em desenvolvimento)

Estimativa de profundidade na região entre marés, utilizando o método de linhas de água.

SCOLHER

Ajuda e Suporte FÓRUM DE DISCUSSÕES PERGUNTAS FREQUENTES PROBLEMAS CONHECIDOS Con

DÚVIDAS TÉCNICAS

Recursos código fonte

LICENÇA

https://cassiengine.org/main/selection

Seleção de Módulo

Análise de Linha de Costa

Mapeamento automático e análise estatística da evolução da linha de costa em qualquer área de interesse costeira no mundo, usando este módulo.

ESCOLHER

Batimetria (beta)

Estimativa de profundidade de águas pouco profundas numa região costeira selecionada, usando algoritmos de inversão ótica e machine learning.

ESCOLHER

Compressão Costeira (beta)

Mapeamento e análise de indicadores para obtenção do potencial de Compressão Costeira (Coastal Squeeze) em áreas de manguezais.

ESCOLHER

Intermaré (em desenvolvimento)

Estimativa de profundidade na região entre marés, utilizando o método de linhas de água.

SCOLHER

Ajuda e Suporte Fórum de discussões Perguntas frequentes

PROBLEMAS CONHECIDOS

Cont

DÚVIDAS TÉCNICAS

Recursos código fonte licença

https://cassiengine.org/main/selection

Ciências do Mar na Margem Equatorial Brasileira

Mario Luiz Mascagni TESE PPGGEO/IG/UFRGS: Adaptações morfodinâmicas de estuários frente às mudanças climáticas

O Espectro Eletromagnético e a luz

I Congresso de Ciências do Mar na Margem Equatorial Brasileira

Como a luz interage com a água (faixa do visível e infra vermelho próximo)

MÓDULO DE BATIMETRIA

Coastal Analyst System from Space Imagery Engine

Plataforma web colaborativa com soluções de observações e previsões geoespaciais aplicadas à monitoramento, mitigação e adaptação da zona costeira face às mudanças do clima.

PRIMEIRO ACESSO

Acesso ao módulo de batimetria

https://cassiengine.org

Seleção de Módulo

Análise de Linha de Costa

Mapeamento automático e análise estatística da evolução da linha de costa em qualquer área de interesse costeira no mundo, usando este módulo.

ESCOLHER

Batimetria (beta)

Estimativa de profundidade de águas pouco profundas numa região costeira selecionada, usando algoritmos de inversão ótica e machine learning.

ESCOLHER

Compressão Costeira (beta)

Mapeamento e análise de indicadores para obtenção do potencial de Compressão Costeira (Coastal Squeeze) em áreas de manguezais.

ESCOLHER

Intermaré (em desenvolvimento)

Estimativa de profundidade na região entre marés, utilizando o método de linhas de água.

FÓRUM DE DISCUSSÕES PERGUNTAS FREQUENTES PROBLEMAS CONHECIDOS

DÚVIDAS TÉCNICAS

LICENÇA

CÓDIGO FONTE

Escolher entre (1) imagem única ou (2) Imagem composta

Obs: A imagem composta é formada pelos valores medianos de cada píxel de uma cena em uma dada

série temporal de imagens de satélite.

Definir a profundidade de extinção da luz

O algoritmo do CASSIE agora aplica o modelo matemático empírico baseado em Stumpf et al. (2003), adaptado de Lyzenga (1978).

$$(1) \quad ST = \frac{\ln(nR_w(\lambda_i))}{\ln(nR_w(\lambda_j))}$$

Onde:

- ST é o modelo proposto por Stumpf et al. (2003) ainda sem referência vertical;
- n é uma constante para garantir que a razão permaneça positiva em todos os valores (no CASSIE foi utilizado o valor 1000);
- $R_w(\lambda_i)$ é a refletância da superfície da banda i; e
- $R_w(\lambda_j)$ É a refletância da superfície da banda j.

$Z_{sat} = m_2(ALG)^2 + m_1(ALG) + m_0$

Onde,

- Zsat é a profundidade estimada pelo satélite,
- ALG é o resultado do algoritmo proveniente da Eq. 3
- m1 e m2 são os coeficientes de ajuste da curva que dimensionam a profundidade de referência e
- m0 é um "offset" de ajuste para o nível da maré.

12 Resultados da inversão batimétrica no CASSIE

... os melhores resultados obtidos com o modelos empírico indicaram um erro médio da ordem de 2,3 m

Imagem única (maio 2018) **Imagem Sentinel-2 TOA** Correções radiométricas com Acolite

Fonte: Filippi (2020)

29

Batimetria Derivada de Satélite (BDS) utilizando técnicas de IA - com foco no Aprendizado de Máquina [Machine Learning (ML)]

Caso 01 - Random Forest

Caso 02 – Multilayer Perceptron (MLP)

Fonte: Mascagni et al. (2024)

Fonte: Mascagni, M. L. (não publicado)

732000E

Satellite-derived Bathymetry - MLP Model

Babitonga Bay, Santa Catarina - Brazil

Coordinate Systems | Projection Universal Transverse Mercator Datum: WGS 84 - UTM 22S

EPGS: 32722

735000E

738000E

0 m

ESRI Standard

741000E

Predictive bathymetric map

Legend

744000E

20 m

Idioma

Análise de Linha de Costa

Mapeamento automático e análise estatística da evolução da linha de costa em qualquer área de interesse costeira no mundo, usando este módulo.

ESCOLHER

Batimetria (beta)

Estimativa de profundidade de águas pouco profundas numa região costeira selecionada, usando algoritmos de inversão ótica e machine learning.

ESCOLHER

Compressão Costeira (beta)

Mapeamento e análise de indicadores para obtenção do potencial de Compressão Costeira (Coastal Squeeze) em áreas de manguezais.

ESCOLHER

Intermaré (em desenvolvimento)

Estimativa de profundidade na região entre marés, utilizando o método de linhas de água.

COLHER

Ajuda e Suporte FÓRUM DE DISCUSSÕES PERGUNTAS FREQUENTES PROBLEMAS CONHECIDOS

Conta

DÚVIDAS TÉCNICAS

Recursos código fonte licença

https://cassiengine.org/main/selection

l Congresso de Ciências do Mar na Margem Equatorial Brasileira

Laís Pool DISSERTAÇÃO PPGGEO/IG/UFRGS: Revealing Intertidal Topography with Public Satellite Imagery: Advancements in Waterline Methodology

MÓDULO TOPOGRAFIA DA ZONA INTERMARÉS

 $SWIR \rightarrow Infravermelho \ de \ ondas \ curtas$

Coastal Analyst System from Space Imagery Engine

Plataforma web colaborativa com soluções de observações e previsões geoespaciais aplicadas à monitoramento, mitigação e adaptação da zona costeira face às mudanças do clima.

PRIMEIRO ACESSO

Acesso ao módulo de topografia

https://cassiengine.org

Seleção de Módulo

Idioma

Análise de Linha de Costa

Mapeamento automático e análise estatística da evolução da linha de costa em qualquer área de interesse costeira no mundo, usando este módulo.

ESCOLHER

Batimetria (beta)

Estimativa de profundidade de águas pouco profundas numa região costeira selecionada, usando algoritmos de inversão ótica e machine learning.

ESCOLHER

Compressão Costeira (beta)

Mapeamento e análise de indicadores para obtenção do potencial de Compressão Costeira (Coastal Squeeze) em áreas de manguezais.

ESCOLHER

DÚVIDAS TÉCNICAS

Intermaré (em desenvolvimento)

Estimativa de profundidade na região entre marés, utilizando o método de linhas de água.

ĒR

orte

FÓRUM DE DISCUSSÕES PERGUNTAS FREQUENTES PROBLEMAS CONHECIDOS

R

CÓDIGO FONTE

Jan 2017

Delimitação da zona entre marés a partir da variação no índice de água

Interpolação do dado
[EBK(Krigagem Baesiana
Empírica]

Linhas de costa identificadas e com informação de nível a partir do dado de maré

... os melhores resultados obtidos com o modelos indicaram um erro médio da ordem de 0,15cm

... os melhores resultados obtidos com o modelos indicaram um erro médio da ordem de 0,15cm

... os melhores resultados obtidos com o modelos indicaram um erro médio da ordem de 0,15cm

Diagrama de dispersão entre dados observados e modelados

... Perfis de comparação/ validação entre dado medido e modelos testados: método waterline com adaptações do CASSIE-Shoreline

> Profiles Comparison (P1) AOI 1

> > 100

Distance (m)

.....

50

------ In-situ Data

---- Modeled Data WL

······ Modeled Data Hybrid

200

150

-0.5 m

49

I Congresso de

Ciências do Mar na

Margem Equatorial Brasileira

... Aplicação na Praia do Amor (MA) indicando migração de banco

Futuro do CASSIE Intermaré >> TDS + ML

Topografia Derivada de Satélite (TDS) utilizando técnicas de IA - com foco no Aprendizado de Máquina [Machine Learning (ML)]

Consórcio de instituições

Equipe

Antonio H.F. Klein Coordenador Geral

Guilherme V. da Silva Validação

Carlos H. Bughi

Desenvolvimento

Gabriel Libório Desenvolvimento

João Luiz B. de Carvalho Validação

Larissa R. S. Sousa Bolsista - Development

Ramicés S. Silva Bolsista - Development

Henrique Faria Cordeiro Bolsista - Development

Apoio Financeiro:

XIC

Inovação e Tecnologia

Anita M. R. Fernandes

Desenvolvimento

Daniel Pais Bolsista - Development

Rafael Q. Gonçalves Desenvolvimento

Dennis Kerr Coelho Desenvolvimento

Wagner Costa Desenvolvimento

Validação

Anderson B. da Silva

Leonardo G. de Lima Validação

Cícero Vicente Ferreira Junior Bolsista - Development

Andrigo Borba dos Santos Bolsista - Development

Ciências do Mar na Margem Equatorial Brasileira

CASSIE-CORe® https://cassiengine.org/ https://cassiecore.paginas.ufsc.br/